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Abstract We study the translational friction coefficients of
a spherical micrometric probe moving in nematic liquid crys-
talline fluids, by solving numerically the constitutive hydro-
dynamic equations of uncompressible isothermal nematic
fluids (Leslie–Ericksen equations). The nematic medium is
described by a vector field, which specifies the director ori-
entation at each point and by the velocity vector field. Sim-
ulations of director dynamics surrounding the moving probe
are presented, and the dependence of translational diffusion
upon liquid crystal viscoelastic parameters is discussed. The
time evolution of director field is studied in the presence
of an orienting magnetic field in two characteristic situa-
tions, i.e. direction of motion parallel and perpendicular to
field. In particular, a detailed analysis is given for the case
of a spherical probe in rectilinear motion in nematic MBBA
(4-methoxibenzylidene-4′-n-butylaniline), together with a
comparison with other nematogens.

Keywords Nematic liquid crystals · Leslie-Ericksen ·
Translational friction coefficients

1 Introduction

In this study we present a systematic analysis of the transla-
tional friction acting on micro-sized probes moving in
nematic fluids, by solving numerically the constitutive hydro-
dynamic equations of nematics under some approximations.
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In the past, several hydrodynamic and kinetic interpre-
tations of experimental data on translation friction (or dif-
fusion) coefficients of solutes in nematic solvents have been
derived. Diogo [1] found analytical expressions for the
friction acting on a spherical molecule in a nematic in the
presence of an external field, under severe approximations.
Franklin [2] used a modification of Kirkwood theory to relate
translation parallel and perpendicular diffusion coefficients
of probes in nematic to viscoelastic parameters, order param-
eter and molecular shape, deriving also an expression for
rotation diffusion coefficients, and lately [3] employed
hydrodynamic theory to interpret experimental findings of
diffusion coefficients of molecular probes. Khare et al. [4]
presented a kinetic treatment to study translation diffusion
in nematic fluids, and compared their results with computer
simulations.

Experimental measures of translation diffusion coefficie-
nts of molecular probes in liquid crystals have been also
obtained using several techniques. Yun and Fredickson [5]
measured translation diffusion of molecules tagged with 14C
radioactive isotopes by liquid scintillation counting in vari-
ous liquid crystals, determining the parallel and perpendicu-
lar diffusion with respect to an applied magnetic field. Mose-
ley and Lowenstein [6,7] studied the diffusive motion of
methane and chloroform molecules in liquid crystals. More
generally Krüger [8] discussed several experimental tech-
niques like NMR, MTR and QENS to measure diffusion
coefficients in nematic and smectic phases, together with
their theoretical interpretation. Recently, Spiegel et al. [9]
employed forced Rayleigh scattering to study the diffusion
of methyl-red in 5CB (4′-n-Pentyl-4-cyanobiphenyl).

In this work, we shall describe numerically the translation
of a spherical probe in nematic liquid crystals, solving the
constitutive hydrodynamic equations of nematic fluids under
the standard hypothesis that the velocity field is the sum of
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isotropic fluids. In particular, we shall present a qualitative
analysis of the director field patterns created by the pertur-
bation caused by the moving probe. The paper is organised
as follows. Basic methodology is presented in Sect. 2, first
by reviewing the translational behaviour of a probe in rec-
tilinear motion in an isotropic Newtonian fluid in condition
of creeping flow, and then by generalising the same meth-
odology to nematic fluids. The computational approach is
also described. Section 3 is devoted to the analysis of several
numerical and asymptotic results. Translation coefficients are
evaluated for the case of spherical probes in the presence of
external magnetic fields, in different low-molecular weight
nematogens. Our findings are summarised in Sect. 4.

2 The model

2.1 Isotropic fluid

It is convenient to first summarise the evaluation of transla-
tional friction coefficients for a moving probe in an isotropic
isothermal incompressible fluid under conditions of creeping
flow [10]. In their most general form Navier–Stokes (NS)
equations for an isotropic isothermal incompressible fluid
describe the time evolution of fields v j (r, t) which are com-
ponents along the fixed axes of a laboratory frame e1, e2, e3

of the velocity field vector v(r, t) in the space point r of
Cartesian coordinates r1, r2, r3 or polar coordinates r, θ, φ

at time t .
In the absence of external forces, NS equations read

ρ
dv j

dt
= − ∂p

∂rk
+ µ∇2v j (1)

where p(r, t) is the pressure, while µ is the dynamic viscos-
ity; d/dt is the material time derivative d/dt = ∂/∂t + vk ×
∂/∂rk . Einstein’s convention holds here and everywhere else
in this paper unless otherwise stated.

Let us now consider a fluid moving around a fixed spheri-
cal probe of radius R, with centre in the laboratory frame ori-
gin, at a constant velocity along a chosen axis, e.g. e3. This is
tantamount to consider a sphere moving at constant velocity
−V along the e3 axis, with the fluid having the same velocity
on the probe surface, and zero flow or velocity at r → ∞
[11], and thus one needs to solve Eq. (1) for the boundary
conditions v j = 0 for r = 0, assuming stick conditions, and
v j = V δ j,3 for r → ∞. In conditions of creeping flow, or
zero material derivative, the solution is analytic [11]

p = −3

2
µV

Rr3

r3 (2)

v j

V
=

[
1 − R

4r

(
R2

r2 + 3

)]
δ j,3 + 3Rr jr3

4r3

(
R2

r2 − 1

)
. (3)

The force acting on the sphere can now be calculated as

Fi = −
∫
S

dSσi j m j (4)

where the integral is extended to the sphere surface and m j

is the j th component in each surface point of the unitary nor-
mal vector m; σi j is the i j component of the stress tensor σ ,
for a Newtonian fluid defined as

σi j = −pδi j + µ

(
∂vi

∂r j
+ ∂v j

∂ri

)
. (5)

Integration of Eq. (4) is easily accomplished to give the
only non-zero component along the axis of motion [10] F3 =
6πµR, i.e. Stokes’ law for the translation friction coefficient
is found

ξ = 6πµR. (6)

2.2 Leslie–Ericksen equations

Let us now review briefly the basic features of the hydrody-
namic description of nematic incompressible isothermal flu-
ids. A nematic fluid is described by the fields n(r, t), a unitary
vector which specifies the director orientation in each point
at a given time and v(r, t), i.e. velocity and pressure. Consti-
tutive Leslie–Ericksen equations describe the time evolution
of the vector components n j , v j and of pressure p in the fol-
lowing form (neglecting so-called inertial components in the
director equation) [12]:

ρ
dv j

dt
= ∂σi j

∂r j
(7)

G j + g j + ∂πi j

∂r j
= 0 (8)

where σi j is the stress tensor, ρ is the density of the bulk, G j

is the j th component of a generic external force (typically
generated by an external electric or magnetic field), g j is an
internal force that act on the director, derived from elastic and
viscous contribution (see below), and πi j is a tensor coming
from purely elastic effects:

πi j = ∂W

∂n j,i
(9)

where n j,i is the shorthand form for ∂n j/∂ri , and W is the
nematic elastic energy

W = 1

2
K11(∇ · n)2 + 1

2
K22(n · ∇ × n)2

+1

2
K33(n × ∇ × n)2 (10)
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where K11, K22 and K33 are elastic constants. Terms depen-
dent upon viscous properties are the stress tensor components

σi j = −pδi j − πik
∂nk

∂r j
+ σ ′

i j (11)

here σ ′
i j is the contribution to the stress tensor coming from

purely viscous effects

σ ′
i j = α1nkn p Akpni n j + α2ni N j + α3n j Ni

+ α4 Ai j + α5ni nk Ak j + α6n j nk Aki . (12)

In Eq. (12), αi are the well-known Leslie’s coefficients
which characterize, together with elastic constants, the nema-
tic fluid under investigation; matrix Ai j is simply Ai j =
1
2

(
∂vi
∂r j

+ ∂v j
∂ri

)
and vector Ni is dependent on the director

and velocity components, i.e. Ni = dni
dt

− ωi j n j , where ωi j

is ωi j = 1
2

(
∂vi
∂r j

− ∂v j
∂ri

)
. Finally the internal force g is given

by

gi = λLni − ∂W

∂ni
− γ1 Ni − γ2 Ai j n j (13)

where γ1 = α3 − α2, γ2 = α3 + α2 and λL is a Lagrange
multiplier related to the constraint on the norm of the direc-
tor ni ni = 1. LE equation are reduced to NS equation by
neglecting all viscous coefficients except α4, provided that
µ is identified with α4/2.

Computational solutions of LE equations are difficult, due
to their intrinsical non-linear character. In the present case,
one should consider the simultaneous solution of Eqs. (7)
and (8), in order to account exactly for backflow effects
due to the director re-orientation on the fluid velocity, i.e.
on the time evolution of the velocity field. It is, however,
reasonable, to a first approximation, at least for the case of
creeping flow, to consider the velocity field as a stationary
and Newtonian quantity. Exact numerical calculations for the
interpretation of magneto-rheological experiments [13–15]
have shown that in several cases the velocity field can indeed
be approximated by the stationary solution of NS equations.
We shall therefore assume that components vk entering direc-
tor equations are known functions given by Eq. (3) for a
sphere. Writing explicitly the director equations one gets

∂ni

∂t
= λLni

γ1
+ ωiknk − γ2

γ1
Aiknk − vk

∂

∂rk
ni

+ K

γ1

∂2

∂r2
k

ni + χ Bi Bk

µ0γ1
nk (14)

where the additional spherical approximation of elastic
energy K1 = K2 = K3 = K has been assumed for simplic-
ity and χ is the magnetic anisotropy. The external force
has been explicitly written as the result of a magnetic field B
coupled with the director [16]. Equation (14) is only subject

to the unitary constraint on the director components and to
boundary and initial conditions.

2.3 Computational methodology

Our strategy is then the following: first we solve numeri-
cally for the director components in time and space, then we
substitute in Eq. (4) to calculate the force acting on the probe
and the friction coefficient. We start by scaling Eq. (14),
by introducing a convenient set of scaled quantities v∗

i =
vi/V, r∗

i = ri/R and t∗ = V t/R. Scaled director equations
are then

∂ni

∂t∗
= λni + ω∗

iknk − γ A∗
iknk − v∗

k
∂

∂r∗
k

ni

+k
∂2

∂r∗2
k

ni + δ
Bi Bk

B2 nk (15)

where only three parameters (plus the ratio of the imposed
external magnetic field components, which is essentially a
geometrical factor) are left: γ = γ2/γ1, k = K/γ1 RV and
δ = χ RB2/µ0γ1V . The first parameter, γ , is related to
viscous effects directly influencing the director time evolu-
tion, depending upon Leslie viscosities α2, α3: notice that a
indirect influence comes also from α4 which enters the ana-
lytical expressions of the Newtonian velocities employed in
the present approximate treatment, while the remaining vis-
cous coefficients α5, α6 do not influence the director dynam-
ics. The second parameter k is proportional to the average
elastic constant, usually of the order of magnitude of 10−11

N. The last parameter δ defines the influence of the magnetic
field on the director motion.

In order to define completely the probe–fluid interaction,
we need to establish boundary conditions of the director com-
ponents on the probe surface. It is interesting to note that in
Eq. (4) only the behaviour of the director field on the surface
is present, so that the correction to the isotropic friction coef-
ficient is straightforward once a condition of strong anchor-
ing, i.e. of fixed director orientation on the probe surface,
[ni (t) = n0

i ], is assumed. Below we shall discuss this limit
case, which corresponds essentially to an infinite anchoring
energy of the probe surface on the director. More interesting
is the case of weak anchoring, which corresponds to neg-
ligible anchoring energy. In the following we shall mostly
concentrate on this case, which can be defined formally by
assuming zero normal derivatives [∂ni (t)/∂m = 0] of the
director components on the surface. Finally, we shall limit
our investigation to a limited ensemble of geometrical set-
ups, namely spherical probes with the direction of motion,
assumed to be along the laboratory frame axis e3 and a mag-
netic field either parallel to the axis of motion, e.g. along
e3 or perpendicular, e.g. along e1. In other words the fac-
tor Bi Bk

/
B2 will be chosen equal to δi,3δk,3 (parallel) or
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Fig. 1 Spherical probe and grid

δi,1δk,1 (perpendicular). The numerical solution of Eq. (15)
and integration of Eq. (4) can be accomplished by defining
a suitable grid of points in space (cfr. Fig. 1) and adopting
a standard finite difference scheme to propagate in time the
director components ni , starting from some suitable initial
condition. In the following we shall assume that initially the
director is everywhere aligned with the imposed magnetic
field.

The time evolution of the director components is obtained
by using a simple explicit time scheme. Discretisation in
space is accomplished by using an almost regular cylindri-
cal grid, i.e. a regular cylindrical grid in the bulk, defined
by cylindrical coordinates r∗

i , φi , zi or Cartesian coordinates
r∗

i cos φi , r∗
i sin φi , zi and an irregular grid for the probe sur-

face, where the director is calculated directly at the points
generated by the intersection of the bulk grid and the surface
itself. Once the director components are calculated in all grid
points at a given time, surface points only are employed to
numerically integrate Eq. (4).

From Eq. (4), substituting the expression for the stress ten-
sor of a nematic fluid, one can conveniently write the total
friction acting on a spherical probe in rectilinear motion in
a nematic fluid in the form ξ

//,⊥ = ξisoc
//,⊥ where ξiso =

3πα4 R and c = c1 + c2 + c3 + 1 + c5 + c6 + cel where the
isotropic term is simply obtained by Eq. (6) for µ = α4

/
2,

and the adimensional factors ci come directly from the dif-
ferent terms entering the stress tensor σi j . They are obtained
directly from Eq. (4) (see below).

3 Results

We discuss several sets of numerical and asymptotic results.
First we present a simplified analysis for the case of a
spherical probe in rectilinear motion in the nematic phase of
4-methoxibenzylidene-4′-n-butylaniline (MBBA), a well-
known liquid crystalline fluid. We assume an average elastic
constant K = 10−11 N; viscosity coefficients at 25◦C are
reported in Table 1. Next we discuss a full solution for the
case of spherical probes in MBBA. Unless otherwise stated,

Table 1 Leslie coefficient for nematic liquid crystal phases at room
temperature

αi (Pa s) MBBA PAA 5CB E7

α1 −0.0087 0.0043 −0.006 0.6

α2 −0.052 −0.0069 −0.07706 −0.13

α3 −0.002 −0.0002 −0.0042 0.06

α4 0.058 0.0068 0.0634 0.48

α5 0.038 0.0047 0.0624 −0.45

α6 −0.016 −0.0023 −0.0184 −0.26

Data for MBBA, PAA, 5CB are taken from refs. [17–19], respectively

we assume a unitary value for the ratio between the probe
radius and velocity, and a value for the radius fixed to 100
µm, and we study the director dynamics and friction coeffi-
cients by varying the scaled number δ. This scaled number
defines the influence of the magnetic field on the director
motion.

Finally, an analysis of simulations performed in other
nematogens, namely PAA (4,4′-dimethoxyazoxy benzene),
5CB (4′-n-pentyl-4-cyanobiphenyl) PAA, 5CB and E7
(a mixture of different liquid crystal).

3.1 Axially symmetric case

We start from a simple analytic calculation of the correc-
tion to the isotropic friction coefficient valid in the case of
an axially symmetric system, by considering i) a spherical
probe, ii) a director aligned with the direction of motion, i.e.
ni = δi,3. This geometrical set-up allows to discuss sim-
plified equations of motion for the director time evolution,
and to illustrate anchoring effects. To simplify further the
presentation, we neglect in this section elastic and convec-
tive terms. We can write director components in the form
n1 = cos � sin �, n2 = sin � sin �, n3 = cos �. If r, φ
and θ are polar coordinates in space, due to axial symmetry
one has simply � = φ and � = �(θ, r, t). By combining
Eq. (14), one can easily obtain an equation in the unknown
function �, which describes the time and space dependent
angle between the local director and the symmetry axis:

∂�

∂t
= 1

2

(
rv⊥ − dv‖

dr

)
sin θ − γ2

2γ1

[ (
rv⊥ + dv‖

dr

)

× sin(θ − 2�) + r2 dv⊥
dr

cos θ sin 2(θ − �)

]

−χ B2

2µ0γ1
sin 2� (16)

where the components of the Newtonian velocity field are
written as v1 = v⊥r1r3, v2 = v⊥r2r3, v3 = v⊥r2

3 + v‖, and

v⊥ = 3RV
4r3

(
R2

r2 − 1
)
, v‖ = V

[
1 − R

4r

(
R2

r2 + 3
)]

.
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In this way it is possible to evidence the angular depen-
dence of the velocity and the director.

On the probe surface, the scaled form of Eq. (15) assumes
a particularly simple form:

∂�

∂t∗
= 3

4
{sin θ + γ [sin (θ − 2�) − cos θ sin 2(θ − �)]}

−1

2
δ sin 2�. (17)

Calculation of corrective terms ci is now relatively easy,
and we report here the complete expressions. From Eq. (4)
one gets

c1 = α1

α4

π∫
0

dθ sin θ cos � cos2 (θ − �)

×[cos θ cos (θ − �) − cos �]

c2 = α2

α4

π∫
0

dθ sin θ cos � sin (θ − �)

(
−1

2
sin θ + 2

3

∂�

∂t

)

c3 = α3

α4

π∫
0

dθ sin θ sin � cos (θ − �)

(
1

2
sin θ − 1

3

∂�

∂t

)

c5 = α5

α4

π∫
0

dθ sin θ cos�

[
1

4
sin 2θ sin � + cos2 θ cos �

−1

2
cos �

(
1 + cos2 θ

)]

c6 = α6

α4

π∫
0

dθ sin θ cos (θ − �)

×
[
sin � sin θ

(
cos2 θ−1

2

)
+ cos � cos θ

(
cos2 θ−1

)]
.

(18)

We can further simplify our result assuming a fixed direc-
tor orientation on the probe surface. This case can also be
considered as the limit behaviour of a spherical probe mov-
ing along the director axis of a nematic sample perfectly
aligned (infinite magnetic field or δ → ∞). The adimen-
sional Stokes factor c is obtained by putting � = 0 (perfect
alignment) in the integral expressions of ci ; one gets:

α4c = 4

15
α1 + 2

3
α2 + 1 + 2

3
α5 + 4

15
α6. (19)

In Fig. 2 we show the dependence of the adimensional
coefficient as obtained from Eq. (17) and Eq. (19). Notice
that the friction is significantly smaller (25%) that in the iso-
tropic case and that only for value of δ > 2, typical of mag-
netic fields larger that 3 Tesla for the geometry considered
here, the asymptotic expression Eq. (19) is acceptable.

Fig. 2 Adimensional Stokes coefficients versus δ parameter, for the
case of a spherical probe in MBBA, calculated according to Eq. (17)
for weak anchoring (full line) and compared to the asymptotic value
obtained from Eq. (19) (dashed line)

3.2 Spherical probe in MBBA

Let us now analyse the director behaviour and friction coef-
ficients for the case of a moving spherical probe in MBBA,
predicted by the full solution of Eq. (15). We start by dis-
cussing the director behaviour in time and space.

In Fig. 3 the time evolution of the director field is repre-
sented for the case of the rectilinear motion of a spherical
particle in MBBA along the external magnetic field (a) and
perpendicular to the external magnetic field (b), for a value of
δ = 0.2. Here we adopt a continuous grey scale to represent
the director angle with axis of motion e3, in the plane e1e3.
Notice that in the perpendicular case the system is not axi-
ally symmetric, so that a slight, but weak dependence of the
director patterns would be observed by changing the plane of
section. The scale goes from dark grey (director aligned with
the axis of motion) to light grey (director perpendicular to the
axis of motion). Each snapshot shows the director pattern at
a given scaled time: the probe is fixed in space and the fluid
is moving from bottom to top. The initial state is chosen to
be of perfect alignment with the field in both cases. The first
observation which can be made is that the disturbance in the
director field is larger in the perpendicular case, while in the
parallel case is limited to a close lateral area surrounding
the probe. Several factors are influencing the director time
evolution: for instance the magnetic torque tends to mini-
mize the director motion, since the initial configuration is
fully aligned (minimal magnetic free energy), while the fluid
motion acts in a more complex way, although basically it
favours alignment of the director along the direction of
motion. A stationary state is reached at slightly later times
in the perpendicular case, thus causing a longer transition
regime corresponding to a time dependent friction coeffi-
cient.
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Fig. 3 Time evolution of
director field, for a spherical
probe in MBBA,
R/V = 1, R = 100 µm and
δ = 0.2: direction of motion
parallel to field (a) and
perpendicular (b)

We can consider the calculation of the stationary adi-
mensional friction factor c in different liquid crystals, or
more exactly in nematic liquid crystalline fluids described
by different sets of viscous numbers αi , reported in Table 1.
For simplicity, we shall choose the same geometrical set-
ups described in the previous section, namely a sphere of
radius of 100 µm, unitary ratio between radius and velocity
and δ = 0.2. We also fix arbitrarily K = 1 × 10−11 N for
all cases considered. We summarize our findings in Fig. 4.
In all cases the friction factor is smaller than one, meaning
that the overall friction correction is negative, i.e. the anisot-
ropy of the nematic phase favours the probe motion. This
effect is emphasise when the direction of motion is paral-
lel to the direction of the orienting magnetic field, whereas
the correction is less important for perpendicular magnetic
field. In general, the correction to the isotropic friction is not

larger than 30% within the notable exception of E7, which is,
however, characterized by relatively high values of Leslie’s
viscosities (cfr. Table 1).

4 Summary

The purpose of this work was to analyse the dynamical behav-
iour of a low viscosity nematic liquid crystals in the pres-
ence of a micro-size spherical probe in rectilinear motion, by
solving numerically the Leslie–Ericksen equations, within
clearly stated approximation valid in the case of micrometric
objects immersed in a continuous anisotropic medium. To
this aim, a very simple computational scheme was employed
based on a non-uniform spatial discretisation and an explicit
propagation in time. Results were presented for the director
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Fig. 4 Stationary adimensional friction factor c, in MBBA (squares),
PAA (open circles), 5CB (triangles) and E7 (filled circles) for δ=0.2
for a sphere; full lines for cases of parallel magnetic field, dashed lines
for the cases of perpendicular magnetic field

dynamics surrounding the moving probe and the dependence
of translational diffusion upon liquid crystal viscoelastic
parameters. The time evolution of director field was stud-
ied in the presence of an orienting magnetic field in two
characteristic situations, i.e. direction of motion parallel and
perpendicular to field. Finally a preliminary analysis was
given for the case of a spherical probe in rectilinear motion in
nematic MBBA (4-methoxibenzylidene-4′-n-butylaniline),
PAA (4,4′-dimethoxyazoxy benzene), 5CB (4′-n-pentyl-4-
cyanobiphenyl) and E7.
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